Discovery of Novel Superconducting Materials with Deep Learning

Colin Burdine

E. P. Blair

IEEE Quantum Week September 19, 2023

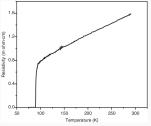
Baylor University

Background

Superconductors

- Superconductors are materials that exhibit two key properties at low temperatures:
 - 1. The resistivity ρ drops to 0Ω (Current flows without resistance).
 - 2. Magnetic fields are expelled in the bulk. (Meissner Effect)

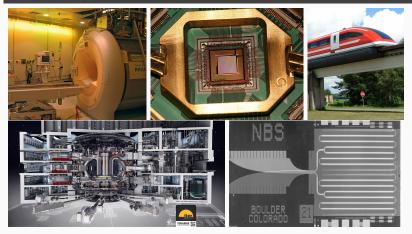
Example: $YBa_2Cu_3O_{7-\delta}$ [VBRS14]



• A superconductor's critical temperature (T_c) is the highest temperature at which it exhibits these two properties.

Superconductors

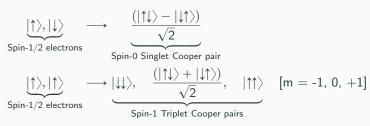
Industrial Applications of Superconductors



https://www.flickr.com/photos/14646075@N03/2833410223 https://www.dwavesys.com/solutions-and-products/systems/ https://commons.wikimedia.org/wiki/File:Transrapid-emsland.jpg https://www.flickr.com/people/37940997@N05 https://nulpubs.nist.gov/nistpubs/sp958-lide/315-318.pdf

Superconductors

- Superconductivity occurs due to anomalous quantum mechanical pairing of electrons [Coo60].
- Pairing allows for condensation of conducting electrons into a single energy state at the Fermi level, E_F:



- Pairing in conventional (i.e. BCS) superconductors is mediated by phonons [BCS57].
- Pairing in unconventional superconductors has not yet been fully explained [ZLI+21].

What makes a good Superconductor?

- High T_c is desirable in most industrial applications, since He-based cryogenics are required for most conventional superconductors.
 - The known limit of conventional superconductors is 44 K at ambient pressure (MgB₂) and 250K+ (Hydrides) at high pressure.
 - Cost effective cooling begins at 77 K (Liquid N₂).
- However, T_c isn't everything:
 - In quantum information devices, coherence time and fidelity of superconducting states is more desirable than high operating T_c.
 - Many unconventional superconductors have superconducting states that are robust under magnetic interference or other perturbations.
 - Unconventional superconductors may provide platforms for the development of the next generation of superconducting quantum devices.

Example: UTe₂

 UTe₂ is an unconventional heavy fermion superconductor in which magnetic and superconducting spin triplet phases coexist [ABF⁺22].

 UTe₂'s chiral p-wave states may give rise to topologically robust Majorana edge states [JHR⁺20].

Prediction of T_c

 Prediction of T_c via ab initio methods is only possible for conventional (BCS) superconductors.

McMillan Equation [McM68]

$$T_c = \frac{\vartheta}{1.45} \exp\left(-\frac{1.04(1+\lambda)}{\lambda - \mu^*(1+0.62\lambda)}\right)$$

(ϑ : characteristic phonon frequency, μ^* : Coulomb pseudopotential, λ : electron-phonon coupling)

- ullet Typically, λ is computed from the Eliashberg spectrum, which is obtainable through density functional theory (DFT) methods.
- \bullet For large or disordered systems, estimating λ comes at a significant computational cost.

(at least, on a classical computer...).

6

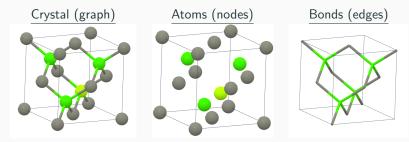
Machine Learning and Superconductivity

- There has been great interest in applying machine learning to superconductor discovery (e.g. see: [SOK+18][KKN+21][XQH+22])
- Few of these approaches directly incorporate atomic structure. E.g. [CG22]:

```
nature > npj computational materials > articles > article
Article | Open Access | Published: 22 November 2022
Designing high-T<sub>C</sub> superconductors with BCS-
inspired screening, density functional theory.
and deep-learning
Kamal Choudhary ✓ orcid.org/0000-0001-9737-80741.2.3 & Kevin Garrity1.2
npj Computational Materials 8, Article number: 244 (2022) | Cite this article
3580 Accesses | 6 Citations | 8 Altmetric | Metrics
Subjects
 Atomistic models
                    Superconducting properties and materials
```

Deep Graph Neural Networks

- Graphs are data structures consisting of networks of nodes connected by edges.
- Atomic structures are naturally interpreted as periodic graphs:



• In this work, we applied these graph neural networks to identify superconductors and predict \mathcal{T}_c from graph representations of crystal structure using experimental data.

Methods

Data Sources

 We combined two large experimental measurement datasets (Supercon v1 [SOK+18] and Supercon v2 [FdCS+23]).

and, when available, applied pressure with the Tc measurement method.

- These datasets were still need of significant cleaning:
 - Corrupted data and missing paper references
 - Algebraic chemical formulas without substituted values.
 - Extraction of wrong physical properties (e.g. Curie Temperature)

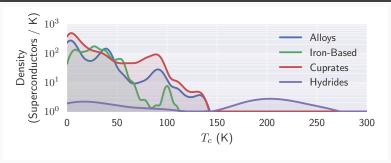
Data Sources

Dataset Distribution

- ullet These datasets had T_c measurements, chemical formulas, and other important metadata, but no atomic structure.
- To obtain crystal structure, we cross-referenced chemical formula data and paper metadata with the Materials Project database.

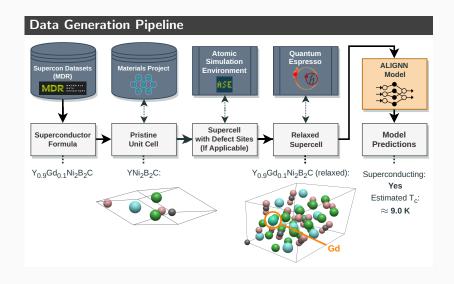
Data Sources

Distribution of Experimental T_c measurements



- 44 K: Limit of conventional ambient superconductivity.
- 100 K: Limit of FeSe thin films on SrTiO₃ substrate []
- \approx 150 K: Limit of the cuprates (HgTlBaCaCuO @ 164 K)
- 250+ K: Hydrides (at high pressures of 100-300 GPa)

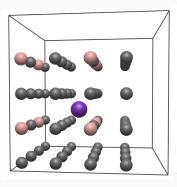
Generating Atomic Structures

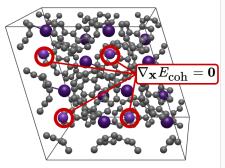


Data Cleaning Challenges

 A significant challenge was handling the placement of defects (vacancies, interstitials, etc. via the semi-classical embedded atom method [DFB93])

Defect Placement Examples: Fake Lattice (left), KCs₃C₆₀ (right).

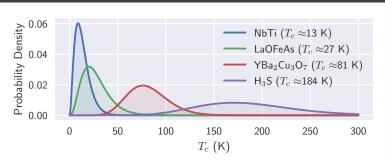




Data Cleaning Challenges

- For each superconducting material, many differing measurements were reported due to various factors (applied pressure, choice of substrate, film thickness, etc.)
- We constructed "empirical" distributions of reported T_c values, and had the model predict these distributions:

Examples of Empirical T_c Distributions:



ALIGNN Model

- We used the Atomistic Line Graph Neural Network (ALIGNN) model for both classifying superconductors and predicting T_c [CD21].
- ALIGNN is one of the top performing deep learning models for structure-based material property predictions on the Materials Project's Matbench benchmarking leaderboard [DWG⁺20].

• Pros:

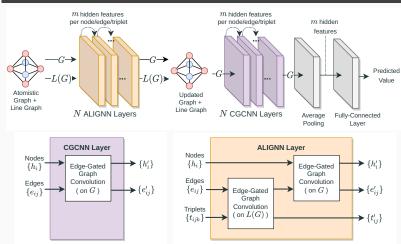
- Is naturally invariant under E(3) (Euclidean) symmetries and space group symmetries.
- Learns representations of bonds and bond features directly from the atomic structure (No DFT required).
- Time complexity is $\mathcal{O}(n)$ (by comparizon DFT is $\mathcal{O}(n^3)$).
- Incorporates both bond lengths and bond angles.

Cons:

- Lacks interpretability.
- Prone to overfitting and requires lots of data to perform well.

ALIGNN Model

ALIGNN Model Architecture [XG18][CD21]



ALIGNN Training

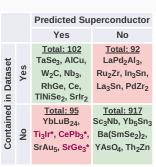
- First, we trained the ALIGNN model as a superconducting/non-superconducting binary classifier.
 - We used randomly sampled materials from the Materials Project database to serve as the non-superconducting class.
 - Non-superconducting materials were drawn according to the same distribution of elements as the superconductors class to mitigate sampling bias.
- We trained another ALIGNN regression model to predict the parameters of the empirical T_c distributions for identified superconductors.
 - To compute the loss between predicted and actual empirical T_c distributions, we used an approximation to the squared p=2 Wasserstein metric:

$$W_2(p_1(x), p_2(x))^2 = \inf_{\gamma(x,y)} \mathbb{E}_{\gamma(x,y)} |x - y|^2$$

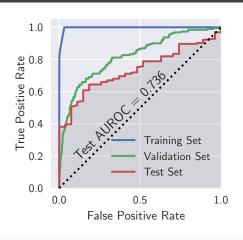
Results

Model Evaluation

Classifying Superconductors (Confusion Matrix and ROC Curve)

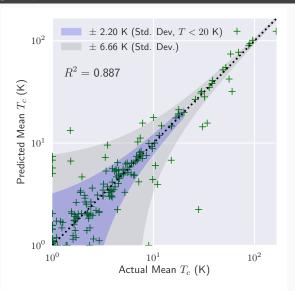


^{*} Materials that are actual superconductors, but were not contained in the dataset.



Model Evaluation

Predicting Empirical T_c Distributions



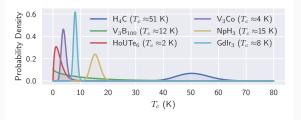
Identified Superconductors

- Using the model, we screened over 40,000 metals, oxides, metallic compounds, and hydrides from the Materials Project database [JOH+13].
- We identified over 600 candidate superconductors not contained in our dataset:

Materials Project ID	Formula	Stable	Experimentally Observed	Predicted Mean T_C	Closest Superconductor in Dataset						
						mp-672238	CeCuSb ₂	Yes	Yes	1.88 K	Cu ₂ Sb
						mp-1025564	LuAl ₂ Pd ₅	Yes	No	8.12 K	Pd
mp-10898	ScAlNi ₂	Yes	Yes	1.25 K	Ni ₃ Al						
mp-573601	Th ₇ Ru ₃	Yes	Yes	0.95 K	Th						
mp-28280	$K_5V_3O_{10}$	Yes	Yes	4.93 K	KO ₃						
mp-1224184	HfZrB ₄	Yes	No	2.57 K	HfB ₂						
mp-1228895	AlGaSb ₂	No	No	4.15 K	AISb						
mp-1222266	Lu ₃ S ₄	Yes	No	3.63 K	LuS						
mp-1079796	Ti ₃ Pd	Yes	No	4.24 K	Ti						
mp-1218331	Sr ₃ CaSi ₈	No	No	1.88 K	Sr(Si) ₂						
mp-1021328	H ₄ C	Yes	No	50.97 K	H ₂						
mp-11494	LuPb ₃	No	Yes	3.80 K	Pb						
mp-1226890	Ce ₄ H ₁₁	Yes	No	331.83 K	CeH ₉						
mp-22266	GdB ₆	Yes	Yes	2.22 K	В						
mp-1184695	Ho ₃ Er	No	No	6.22 K	Ho						

Predicting T_c of Candidates

• Using the model trained on the T_c of known superconductors, we estimated the empirical T_c distribution of all predicted candidates.



- The T_c of identified candidates range from 0 to 335 K.
- The non-hydride, non-cuprate superconductors range from 0 to approximately 50 K.
- Several of the candidates contain magnetic rare-earth elements.

Ongoing Work

- Currently, we are collaborating with Dr. Julia Y. Chan and her lab at Baylor University to synthesize and measure the properties of the most promising intermetallic and oxide candidates.
- So far, we have confirmed two of the model's predictions:
 - 1. La₂Sn₃ (Observed T_c: 2.5 K, Predicted: 2.8 K)
 - 2. Lu₃Ir₄Ge₁₃ (Observed T_c: 2.8 K, Predicted: 1.8 K)
- However, some of the proposed candidates have proved difficult to synthesize:
 - CeBi (oxidizes very rapidly)
 - CeTe (flammable and toxic)
- More candidates are under development.

Conclusion

Conclusion

- We trained an atomic structure-based graph neural network model (ALIGNN) to identify and predict superconductor T_c with a standard deviation error of 6.66 K (2.20K for low- T_c).
- After screening the Materials Project database, we found more than 600 candidate superconductors.

Ongoing and Future Work

- We are currently collaborating with an inorganic chemistry lab at Baylor University to synthesize some of the more promising candidates.
- Additional work needs to be done incorporating electronic features (e.g. band structure) and incorporating structural features (e.g. substrates, film thickness) into the model.

Acknowledgments

- The author would like to extend special thanks to:

Advisor

• Dr. E. P. Blair • Dr. Julia Y. Chan (and her students)

Collaborators

• The IEEE Quantum Week 2023 chairs, organizers, presenters, and attendees for making this an amazing conference experience.

Questions

Superconductor Candidates List

https://cburdine.github.io/files/qce23.html

 ${\bf Git Hub\ repository:\ https://github.com/cburdine/sc-screening}$

For more detailed questions, email: colin_burdine1@baylor.edu

References i

- D. Aoki, J.-P. Brison, J. Flouquet, K. Ishida, G. Knebel, Y. Tokunaga, and Y. Yanase, *Unconventional superconductivity in UTe2*, J. Phys.: Condens. Matter **34** (2022), no. 24, 243002 (en).
- J. Bardeen, L. N. Cooper, and J. R. Schrieffer, *Theory of Superconductivity*, Phys. Rev. **108** (1957), no. 5, 1175–1204.
- Kamal Choudhary and Brian DeCost, Atomistic Line Graph Neural Network for improved materials property predictions, npj Comput Mater 7 (2021), no. 1, 1–8 (en).
- Kamal Choudhary and Kevin Garrity, Designing high-TC superconductors with BCS-inspired screening, density functional theory, and deep-learning, npj Comput Mater 8 (2022), no. 1, 1–12 (en).

References ii

- Leon N. Cooper, *Theory of Superconductivity*, American Journal of Physics **28** (1960), no. 2, 91–101.
- Murray S. Daw, Stephen M. Foiles, and Michael I. Baskes, *The embedded-atom method: a review of theory and applications*, Materials Science Reports **9** (1993), no. 7, 251–310 (en).
- Alexander Dunn, Qi Wang, Alex Ganose, Daniel Dopp, and Anubhav Jain, Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm, npj Comput Mater 6 (2020), no. 1, 1–10 (en).
- Luca Foppiano, Pedro Baptista de Castro, Pedro Ortiz Suarez, Kensei Terashima, Yoshihiko Takano, and Masashi Ishii, *Automatic extraction of materials and properties from superconductors scientific literature*, Science and Technology of Advanced Materials: Methods 3 (2023), no. 1, 2153633.

References iii

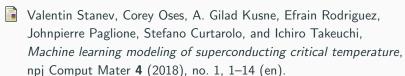
Lin Jiao, Sean Howard, Sheng Ran, Zhenyu Wang, Jorge Olivares Rodriguez, Manfred Sigrist, Ziqiang Wang, Nicholas P. Butch, and Vidya Madhavan, *Chiral superconductivity in heavy-fermion metal UTe2*, Nature **579** (2020), no. 7800, 523–527 (en).

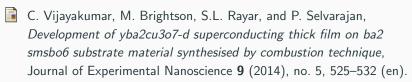
Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, and Kristin A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Materials 1 (2013), no. 1, 011002.

Tomohiko Konno, Hodaka Kurokawa, Fuyuki Nabeshima, Yuki Sakishita, Ryo Ogawa, Iwao Hosako, and Atsutaka Maeda, *Deep learning model for finding new superconductors*, Phys. Rev. B **103** (2021), no. 1, 014509.

References iv

W. L. McMillan, *Transition temperature of strong-coupled superconductors*, Physical Review **167** (1968), no. 2, 331–344 (en).





Tian Xie and Jeffrey C. Grossman, Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties, Phys. Rev. Lett. 120 (2018), no. 14, 145301.

References v

S. R. Xie, Y. Quan, A. C. Hire, B. Deng, J. M. DeStefano, I. Salinas, U. S. Shah, L. Fanfarillo, J. Lim, J. Kim, G. R. Stewart, J. J. Hamlin, P. J. Hirschfeld, and R. G. Hennig, Machine learning of superconducting critical temperature from Eliashberg theory, npj Comput Mater 8 (2022), no. 1, 1–8 (en).

Xingjiang Zhou, Wei-Sheng Lee, Masatoshi Imada, Nandini Trivedi, Philip Phillips, Hae-Young Kee, Päivi Törmä, and Mikhail Eremets, High-temperature superconductivity, Nat Rev Phys 3 (2021), no. 7, 462-465 (en).