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Background



e Superconductors are materials that exhibit two key properties at low
temperatures:

1. The resistivity p drops to 02 (Current flows without resistance).
2. Magpnetic fields are expelled in the bulk. (Meissner Effect)

Example: YBa,Cu30;_; [VBRS14]
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e A superconductor’s critical temperature (T.) is the highest
temperature at which it exhibits these two properties.

https://commons.wikimedia.org/wiki/File:Meissner_effect.p1390048. jpg



Superconductors

Industrial Applications of Superconductors
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Superconductors

e Superconductivity occurs due to anomalous quantum mechanical
pairing of electrons [Coo60].

e Pairing allows for condensation of conducting electrons into a single
energy state at the Fermi level, Ef:
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Spin-1 Triplet Cooper pairs
e Pairing in conventional (i.e. BCS) superconductors is mediated by
phonons [BCS57].

e Pairing in unconventional superconductors has not yet been fully
explained [ZLIT21].



What makes a good Superconductor?

e High T, is desirable in most industrial applications, since He-based
cryogenics are required for most conventional superconductors.
e The known limit of conventional superconductors is 44 K at ambient
pressure (MgB>) and 250K+ (Hydrides) at high pressure.
e Cost effective cooling begins at 77 K (Liquid N).

e However, T, isn't everything:
e In quantum information devices, coherence time and fidelity of
superconducting states is more desirable than high operating T..
e Many unconventional superconductors have superconducting states
that are robust under magnetic interference or other perturbations.
e Unconventional superconductors may provide platforms for the
development of the next generation of superconducting quantum

devices.



Example: UTe,

e UTe, is an unconventional heavy fermion superconductor in which
magnetic and superconducting spin triplet phases coexist [ABF22].
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e UTey's chiral p-wave states may give rise to topologically robust
Majorana edge states [JHR™20].



Prediction of T.

e Prediction of T, via ab initio methods is only possible for

conventional (BCS) superconductors.

McMillan Equation [McM®68]
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(9: characteristic phonon frequency, w*: Coulomb pseudopotential, A: electron-phonon coupling)

e Typically, \ is computed from the Eliashberg spectrum, which is
obtainable through density functional theory (DFT) methods.

e For large or disordered systems, estimating A comes at a significant

computational cost.

(at least, on a classical computer...).



Machine Learning and Superconductivity

e There has been great interest in applying machine learning to
superconductor discovery (e.g. see: [SOKT18][KKN*21][XQH*22])

e Few of these approaches directly incorporate atomic structure. E.g.
[CG22]:
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Deep Graph Neural Networks

e Graphs are data structures consisting of networks of nodes
connected by edges.

e Atomic structures are naturally interpreted as periodic graphs:

Crystal (graph) Atoms (nodes) Bonds (edges)

e In this work, we applied these graph neural networks to identify
superconductors and predict T, from graph representations of
crystal structure using experimental data.



Methods



Data Sources

e We combined two large experimental measurement datasets
(Supercon v1 [SOK*18] and Supercon v2 [FdCST23)]).

Supercon v1 Supercon v2
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e These datasets were still need of significant cleaning:
e Corrupted data and missing paper references
e Algebraic chemical formulas without substituted values.

e Extraction of wrong physical properties (e.g. Curie Temperature)




Data Sources
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e These datasets had T, measurements, chemical formulas, and other
important metadata, but no atomic structure.

e To obtain crystal structure, we cross-referenced chemical formula
data and paper metadata with the Materials Project database.
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Data Sources

Distribution of Experimental 7. measurements

103
——— Alloys
102 —— |ron-Based
——— Cuprates

Hydrides

Density
(Superconductors / K)

0 50 100 150 200 250 300
T. (K)

e 44 K: Limit of conventional ambient superconductivity.

100 K: Limit of FeSe thin films on SrTiO3 substrate []
~ 150 K: Limit of the cuprates (HgTIBaCaCuO @ 164 K)
e 250+ K: Hydrides (at high pressures of 100-300 GPa)
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Generating Atomic Structures
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Data Cleaning Challenges

e A significant challenge was handling the placement of defects
(vacancies, interstitials, etc. via the semi-classical embedded atom
method [DFB93])

Defect Placement Examples: Fake Lattice (left), KCs3Cqo (right).
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Data Cleaning Challenges

e For each superconducting material, many differing measurements
were reported due to various factors (applied pressure, choice of

substrate, film thickness, etc.)
e We constructed “empirical” distributions of reported T, values, and

had the model predict these distributions:

Examples of Empirical 7. Distributions:
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ALIGNN Model

e We used the Atomistic Line Graph Neural Network (ALIGNN) model
for both classifying superconductors and predicting T. [CD21].

e ALIGNN is one of the top performing deep learning models for
structure-based material property predictions on the Materials
Project’s Matbench benchmarking leaderboard [DWG™20].

e Pros:

e [s naturally invariant under E(3) (Euclidean) symmetries and space
group symmetries.

e Learns representations of bonds and bond features directly from the
atomic structure (No DFT required).

e Time complexity is O(n) (by comparizon DFT is O(n%)).

e Incorporates both bond lengths and bond angles.

e Cons:
e Lacks interpretability.
e Prone to overfitting and requires lots of data to perform well.
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ALIGNN Model

LIGNN Model Architecture [XG18][CD21]
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ALIGNN Training

e First, we trained the ALIGNN model as a
superconducting/non-superconducting binary classifier.

e We used randomly sampled materials from the Materials Project
database to serve as the non-superconducting class.

e Non-superconducting materials were drawn according to the same
distribution of elements as the superconductors class to mitigate
sampling bias.

e We trained another ALIGNN regression model to predict the
parameters of the empirical T, distributions for identified
superconductors.

e To compute the loss between predicted and actual empirical T,
distributions, we used an approximation to the the squared p = 2

Wasserstein metric:
Wa(pr(, p2(x))” = inf By lx =y
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Results




Model Evaluation
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Model Evaluation

Predicting Empirical 7. Distributions
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Identified Super

e Using the model, we screened over 40,000 metals, oxides, metallic
compounds, and hydrides from the Materials Project database
[JOH*13].

e We identified over 600 candidate superconductors not contained in
our dataset:

Materials Project ID Formula Stable Experimentally Predicted Closest
Observed Mean T¢ Superconductor
in Dataset
mp-672238 CeCuSby Yes Yes 1.88 K CuySb
mp-1025564 LuAl, Pdg Yes No 8.12 K Pd
mp-10898 ScAINip Yes Yes 125 K NigAl
mp-573601 ThyRu3 Yes Yes 0.95 K Th
mp-28280 K5V3019 Yes Yes 4.93K KO3
mp-1224184 HfZrBy Yes No 2,57 K HfBy
mp-1228895 AlGaSby No No 415 K AlSb
mp-1222266 Lu3Sy Yes No 3.63 K LuS
mp-1079796 TizPd Yes No 424 K Ti
mp-1218331 Sr3CaSig No No 1.88 K Sr(Si)p
mp-1021328 HyC Yes No 50.97 K Ho
mp-11494 LuPbg No Yes 3.80 K Pb
mp-1226890 CegHyy Yes No 331.83 K CeHg
mp-22266 GdBg Yes Yes 222 K B

mp-1184695 HozEr No No 6.22 K Ho
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Predicting T. of Candidates

e Using the model trained on the T, of known superconductors, we
estimated the empirical T, distribution of all predicted candidates.

o
o

2 —— H,C (T, ~51 K) —— V;Co (T, ~4 K)
g oa —— ViBioo (T2 12 K) NpHs (T ~15 K)
> —— HoUTeq (T, =2 K) Gdlrg (T, ~8 K)
E 0.2
[
g0 == —

0 10 20 30 40 5 60 70 80

7. (K)

e The T, of identified candidates range from 0 to 335 K.

e The non-hydride, non-cuprate superconductors range from 0 to
approximately 50 K.

e Several of the candidates contain magnetic rare-earth elements.
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Ongoing Work

e Currently, we are collaborating with Dr. Julia Y. Chan and her lab
at Baylor University to synthesize and measure the properties of the
most promising intermetallic and oxide candidates.

e So far, we have confirmed two of the model’s predictions:

1. LaxSn3 (Observed Tc: 2.5 K, Predicted: 2.8 K)
2. LuslrsGeys (Observed T.: 2.8 K, Predicted: 1.8 K)

e However, some of the proposed candidates have proved difficult to
synthesize:

e CeBi (oxidizes very rapidly)

e CeTe (flammable and toxic)

e More candidates are under development.
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Conclusion




Conclusion

e We trained an atomic structure-based graph neural network model
(ALIGNN) to identify and predict superconductor T, with a
standard deviation error of 6.66 K (2.20K for low-T¢).

o After screening the Materials Project database, we found more than
600 candidate superconductors.

Ongoing and Future Work

e We are currently collaborating with an inorganic chemistry lab at
Baylor University to synthesize some of the more promising
candidates.

e Additional work needs to be done incorporating electronic features
(e.g. band structure) and incorporating structural features (e.g.
substrates, film thickness) into the model.
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Questions

Superconductor Candidates List

@) @)

O}

https:/ /cburdine.github.io/files/qce23.html

3
>e
7
» e
300 000 00

) 000

GitHub repository: https://github.com/cburdine/sc-screening

For more detailed questions, email: colin burdinel@baylor.edu
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