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Background



Superconductors

� Superconductors are materials that exhibit two key properties at low

temperatures:

1. The resistivity ρ drops to 0Ω (Current flows without resistance).

2. Magnetic fields are expelled in the bulk. (Meissner Effect)

Example: YBa2Cu3O7´δ [VBRS14]

� A superconductor’s critical temperature (Tc) is the highest

temperature at which it exhibits these two properties.

https://commons.wikimedia.org/wiki/File:Meissner effect p1390048.jpg
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Superconductors

Industrial Applications of Superconductors

https://www.flickr.com/photos/14646075@N03/2833410223

https://www.dwavesys.com/solutions-and-products/systems/

https://commons.wikimedia.org/wiki/File:Transrapid-emsland.jpg

https://www.flickr.com/people/37940997@N05

https://nvlpubs.nist.gov/nistpubs/sp958-lide/315-318.pdf
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Superconductors

� Superconductivity occurs due to anomalous quantum mechanical

pairing of electrons [Coo60].

� Pairing allows for condensation of conducting electrons into a single

energy state at the Fermi level, EF :
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Spin-1 Triplet Cooper pairs

[m = -1, 0, +1]

� Pairing in conventional (i.e. BCS) superconductors is mediated by

phonons [BCS57].

� Pairing in unconventional superconductors has not yet been fully

explained [ZLI`21].
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What makes a good Superconductor?

� High Tc is desirable in most industrial applications, since He-based

cryogenics are required for most conventional superconductors.

� The known limit of conventional superconductors is 44 K at ambient

pressure (MgB2) and 250K+ (Hydrides) at high pressure.

� Cost effective cooling begins at 77 K (Liquid N2).

� However, Tc isn’t everything:

� In quantum information devices, coherence time and fidelity of

superconducting states is more desirable than high operating Tc .

� Many unconventional superconductors have superconducting states

that are robust under magnetic interference or other perturbations.

� Unconventional superconductors may provide platforms for the

development of the next generation of superconducting quantum

devices.
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Example: UTe2

� UTe2 is an unconventional heavy fermion superconductor in which

magnetic and superconducting spin triplet phases coexist [ABF`22].

� UTe2’s chiral p-wave states may give rise to topologically robust

Majorana edge states [JHR`20].
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Prediction of Tc

� Prediction of Tc via ab initio methods is only possible for

conventional (BCS) superconductors.

McMillan Equation [McM68]

Tc “
ϑ

1.45
exp

ˆ

´
1.04p1 ` λq

λ ´ µ˚p1 ` 0.62λq

˙

(ϑ: characteristic phonon frequency, µ˚: Coulomb pseudopotential, λ: electron-phonon coupling)

� Typically, λ is computed from the Eliashberg spectrum, which is

obtainable through density functional theory (DFT) methods.

� For large or disordered systems, estimating λ comes at a significant

computational cost.

(at least, on a classical computer...).
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Machine Learning and Superconductivity

� There has been great interest in applying machine learning to

superconductor discovery (e.g. see: [SOK`18][KKN`21][XQH`22])

� Few of these approaches directly incorporate atomic structure. E.g.

[CG22]:
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Deep Graph Neural Networks

� Graphs are data structures consisting of networks of nodes

connected by edges.

� Atomic structures are naturally interpreted as periodic graphs:

Crystal (graph) Atoms (nodes) Bonds (edges)

� In this work, we applied these graph neural networks to identify

superconductors and predict Tc from graph representations of

crystal structure using experimental data.
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Methods



Data Sources

� We combined two large experimental measurement datasets

(Supercon v1 [SOK`18] and Supercon v2 [FdCS`23]).

Supercon v1 Supercon v2

� These datasets were still need of significant cleaning:

� Corrupted data and missing paper references

� Algebraic chemical formulas without substituted values.

� Extraction of wrong physical properties (e.g. Curie Temperature)
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Data Sources

Dataset Distribution
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� These datasets had Tc measurements, chemical formulas, and other

important metadata, but no atomic structure.

� To obtain crystal structure, we cross-referenced chemical formula

data and paper metadata with the Materials Project database.
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Data Sources

Distribution of Experimental Tc measurements
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� 44 K: Limit of conventional ambient superconductivity.

� 100 K: Limit of FeSe thin films on SrTiO3 substrate []

� « 150 K: Limit of the cuprates (HgTlBaCaCuO @ 164 K)

� 250+ K: Hydrides (at high pressures of 100-300 GPa)
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Generating Atomic Structures

Data Generation Pipeline

Pristine

Unit Cell

Superconductor

Formula


Materials Project

Supercell

with Defect Sites

(If Applicable)


Quantum
Espresso


Supercon Datasets
(MDR)

Atomic
Simulation

Environment


Relaxed

 Supercell

ALIGNN

 Model


Model
Predictions

Y0.9Gd0.1Ni2B2C YNi2B2C: Y0.9Gd0.1Ni2B2C (relaxed):

Gd

Superconducting: 

Yes


Estimated Tc:

 9.0 K


12



Data Cleaning Challenges

� A significant challenge was handling the placement of defects

(vacancies, interstitials, etc. via the semi-classical embedded atom

method [DFB93])

Defect Placement Examples: Fake Lattice (left), KCs3C60 (right).
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Data Cleaning Challenges

� For each superconducting material, many differing measurements

were reported due to various factors (applied pressure, choice of

substrate, film thickness, etc.)

� We constructed “empirical” distributions of reported Tc values, and

had the model predict these distributions:

Examples of Empirical Tc Distributions:
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ALIGNN Model

� We used the Atomistic Line Graph Neural Network (ALIGNN) model

for both classifying superconductors and predicting Tc [CD21].

� ALIGNN is one of the top performing deep learning models for

structure-based material property predictions on the Materials

Project’s Matbench benchmarking leaderboard [DWG`20].

� Pros:

� Is naturally invariant under Ep3q (Euclidean) symmetries and space

group symmetries.

� Learns representations of bonds and bond features directly from the

atomic structure (No DFT required).

� Time complexity is Opnq (by comparizon DFT is Opn3
q).

� Incorporates both bond lengths and bond angles.

� Cons:

� Lacks interpretability.

� Prone to overfitting and requires lots of data to perform well.
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ALIGNN Model

ALIGNN Model Architecture [XG18][CD21]
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ALIGNN Training

� First, we trained the ALIGNN model as a

superconducting/non-superconducting binary classifier.

� We used randomly sampled materials from the Materials Project

database to serve as the non-superconducting class.

� Non-superconducting materials were drawn according to the same

distribution of elements as the superconductors class to mitigate

sampling bias.

� We trained another ALIGNN regression model to predict the

parameters of the empirical Tc distributions for identified

superconductors.

� To compute the loss between predicted and actual empirical Tc

distributions, we used an approximation to the the squared p “ 2

Wasserstein metric:

W2pp1pxq, p2pxqq
2

“ inf
γpx,yq

Eγpx,yq|x ´ y |
2
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Results



Model Evaluation

Classifying Superconductors (Confusion Matrix and ROC Curve)
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Model Evaluation

Predicting Empirical Tc Distributions
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Identified Superconductors

� Using the model, we screened over 40,000 metals, oxides, metallic

compounds, and hydrides from the Materials Project database

[JOH`13].

� We identified over 600 candidate superconductors not contained in

our dataset:

Materials Project ID Formula Stable Experimentally

Observed

Predicted

Mean Tc

Closest

Superconductor

in Dataset

mp-672238 CeCuSb2 Yes Yes 1.88 K Cu2Sb

mp-1025564 LuAl2Pd5 Yes No 8.12 K Pd

mp-10898 ScAlNi2 Yes Yes 1.25 K Ni3Al

mp-573601 Th7Ru3 Yes Yes 0.95 K Th

mp-28280 K5V3O10 Yes Yes 4.93 K KO3
mp-1224184 HfZrB4 Yes No 2.57 K HfB2
mp-1228895 AlGaSb2 No No 4.15 K AlSb

mp-1222266 Lu3S4 Yes No 3.63 K LuS

mp-1079796 Ti3Pd Yes No 4.24 K Ti

mp-1218331 Sr3CaSi8 No No 1.88 K Sr(Si)2
mp-1021328 H4C Yes No 50.97 K H2
mp-11494 LuPb3 No Yes 3.80 K Pb

mp-1226890 Ce4H11 Yes No 331.83 K CeH9
mp-22266 GdB6 Yes Yes 2.22 K B

mp-1184695 Ho3Er No No 6.22 K Ho

... ... ... ... ... ...
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Predicting Tc of Candidates

� Using the model trained on the Tc of known superconductors, we

estimated the empirical Tc distribution of all predicted candidates.
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� The Tc of identified candidates range from 0 to 335 K.

� The non-hydride, non-cuprate superconductors range from 0 to

approximately 50 K.

� Several of the candidates contain magnetic rare-earth elements.
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Ongoing Work

� Currently, we are collaborating with Dr. Julia Y. Chan and her lab

at Baylor University to synthesize and measure the properties of the

most promising intermetallic and oxide candidates.

� So far, we have confirmed two of the model’s predictions:

1. La2Sn3 (Observed Tc : 2.5 K, Predicted: 2.8 K)

2. Lu3Ir4Ge13 (Observed Tc : 2.8 K, Predicted: 1.8 K)

� However, some of the proposed candidates have proved difficult to

synthesize:

� CeBi (oxidizes very rapidly)

� CeTe (flammable and toxic)

� More candidates are under development.
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Conclusion



Conclusion

� We trained an atomic structure-based graph neural network model

(ALIGNN) to identify and predict superconductor Tc with a

standard deviation error of 6.66 K (2.20K for low-Tc).

� After screening the Materials Project database, we found more than

600 candidate superconductors.

Ongoing and Future Work

� We are currently collaborating with an inorganic chemistry lab at

Baylor University to synthesize some of the more promising

candidates.

� Additional work needs to be done incorporating electronic features

(e.g. band structure) and incorporating structural features (e.g.

substrates, film thickness) into the model.
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Questions

Superconductor Candidates List

https://cburdine.github.io/files/qce23.html

GitHub repository: https://github.com/cburdine/sc-screening

For more detailed questions, email: colin burdine1@baylor.edu
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